Dissociating task performance from fMRI repetition attenuation in ventral visual cortex.
نویسندگان
چکیده
Repeated visual stimuli elicit reduced neural responses compared with novel stimuli in various brain regions (repetition attenuation). This effect has become a powerful tool in fMRI research, allowing researchers to investigate the stimulus-specific neuronal representations underlying perception and cognition. Repetition attenuation is also commonly associated with behavioral priming, whereby response accuracy and speed increase with repetition. This raises the possibility that repetition attenuation merely reflects decreased processing time. Here, we report a full dissociation between repetition attenuation and behavioral performance by varying the task performed on identical visual stimuli. In the scene task, observers judged whether two photographs came from the same scene, and in the image task, they judged whether the two photographs were identical pixel for pixel. The two tasks produced opposite patterns of behavioral performance: in the scene task, responses were faster and more accurate when the photographs were very similar, whereas, in the image task, responses were faster and more accurate when the photographs were less similar. However, in the parahippocampal place area (PPA), a scene-selective region of ventral cortex, identical repetition attenuation was observed in both tasks: lower neural responses for the very similar pairs relative to the less similar pairs. Whereas the PPA was impervious to task modulation, responses from two frontal regions mirrored behavioral performance, consistent with their role in decision-making. Thus, although repetition attenuation and performance are often correlated, they can be dissociated, suggesting that attenuation in ventral visual areas reflects stimulus-specific processing independent of task demands.
منابع مشابه
Visual quality determines the direction of neural repetition effects.
One ubiquitous finding in functional magnetic resonance imaging studies is that repeated stimuli elicit lower responses than novel stimuli. In apparent contradiction, some studies have reported the exact opposite effect--greater responses to repeated than novel stimuli--in many of the same brain regions. Interestingly, these latter enhancement effects are typically obtained when stimuli have be...
متن کاملAn fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli
ABSTRACT Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF). Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd. Results: Average percentage BOLD signa...
متن کاملTask-context-dependent Linear Representation of Multiple Visual Objects in Human Parietal Cortex
A host of recent studies have reported robust representations of visual object information in the human parietal cortex, similar to those found in ventral visual cortex. In ventral visual cortex, both monkey neurophysiology and human fMRI studies showed that the neural representation of a pair of unrelated objects can be approximated by the averaged neural representation of the constituent obje...
متن کاملDissociating cortical regions activated by semantic and phonological tasks: a FMRI study in blind and sighted people.
Previous neuroimaging studies of language processing in blind individuals described cortical activation of primary (V1) and higher tier visual areas, irrespective of the age of blindness onset. Specifically, participants were given nouns and asked to generate an associated verb. These results confirmed the presence of adaptations in the visual cortex of blind people and suggested that these res...
متن کاملDissociating the neural bases of repetition-priming and adaptation in the human brain for faces.
The repetition of a given stimulus leads to the attenuation of the functional magnetic resonance imaging (fMRI) signal compared with unrepeated stimuli, a phenomenon called fMRI adaptation or repetition suppression (RS). Previous studies have related RS of the fMRI signal behaviorally both to improved performance for the repeated stimulus (priming) and to shifts of perception away from the firs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 22 شماره
صفحات -
تاریخ انتشار 2007